

Towards Network Containment in
Malware Analysis Systems

Mariano Graziano, Corrado Leita, Davide Balzarotti
ACSAC, Orlando, Florida, 3-7 December 2012

Malware Analysis Scenario
● Analysis based on Sandboxes (API Hooking, Emulation)

● Complex and distributed Security Companies
Infrastructure

● Malware behavior often depends on external factors
(C&C servers)

● Sophisticated attacks involve multiple stages

Malware Execution Stages

DNS

WEB
SERVER

C&C
SERVER

PCs

DNS name resolution

Download additional
components, check Internet
connectivity

Receive commands,
exfiltrate information

Extend infected population

 MALWARE

Repeatability & Containment

DNS

WEB
SERVER

C&C
SERVER

PCs

DNS name resolution

Web Server Unreachable,
Impossible to download the
components

Receive commands,
exfiltrate information

Impossible to harm other
machines

 MALWARE

 CONTAINMENT

Goal
● Goal:

– Model/Replay the network traffic for malware
containment and experiment repeatability

● Motivation:

– Malware behavior often depends on the network
context

– Experiments are not repeatable over time

– Sandbox containment of polymorphic variations

Malware Containment
● Only possible in case of:

 Polymorphic variations
 Re-execution of the same sample

● Full containment → Repeatable execution

● Current containment solutions:

APPROACH CONTAINMENT QUALITY

Full Internet Access x ~

Filter/Redirect specific ports ~ ~

Common service emulation v ~

Full Isolation v x

Roadmap
● Introduction

● Protocol Inference
● System Overview

● Evaluation

ScriptGen1

● Existing suite of protocol learning techniques developed
for high interaction honeypots

● It aims at rebuilding portions of a protocol finite state
machine (FSM) through the observation of samples of
network interaction between a client and a server
implementing such protocol

● No assumption is made on the protocol structure, and no
a priori knowledge is assumed on the protocol semantics

1 Leita Corrado, Mermoud Ken, Dacier Marc - “ScriptGen: an automated script generation tool for honeyd” - ACSA 2005, 21st Annual Computer Security Applications
Conference, December 5-9, 2005, Tucson, USA

Finite State Machine
● It is a tree:

 The vertices contain the server’s answer
 The edges contain the client’s request

SMTP Finite State Machine

Roadmap
● Introduction

● Protocol Inference

● System Overview
● Evaluation

System Overview
● Traffic Collection

● By running the sample in a sandbox or by
using past analyses

● Endpoint Analysis
● Cleaning and normalization process

● Traffic Modeling
● Model generation (two ways: incremental

learning or offline)
● Traffic Containment

● Two modes (Full or partial containment)

Traffic Model Creation

SANDBOX

ENDPOINT ANALYSIS

 CLUSTERING

NORMALIZATION

 NETWORK
TRACES

TRAFFIC
MODELING

SCRIPTGEN

Mozzie – Full Containment

FSM Player

SANDBOX TRAFFIC CONTAINMENT

Mozzie – Partial Containment

FSM Player

Refinement

TRAFFIC CONTAINMENT

SANDBOX
REMOTE SERVER

Partial containment

SETUP PHASE

PROXY PHASE

FULL
CONTAINMENT

Roadmap
● Introduction

● Protocol Inference

● System Overview

● Evaluation

Experiments
● Goals

– Find minimum number of network traces to generate a
FSM to fully contain the network traffic

– Learning optimal parameters for commonly used protocols
(HTTP, IRC, DNS, SMTP) + custom protocols

● Two groups of experiments

– Offline

– Incremental learning

Offline Experiments

Sample Category Containmnet Normalization Traces

W32/Virut IRC Botnet FULL NO 15

PHP/PBot.AN IRC Botnet FULL NO 12

W32/Koobface.EXT HTTP Botnet 72% YES 9

W32/Agent.VCRE Dropper FULL NO 23

W32/Agent.XIMX Dropper FULL YES 10

Incremental Learning Experiments

Sample Category Runs Containment Normalization

W32/Banload.BFHV Dropper 23 FULL NO

W32/Downloader Dropper 25 FULL NO

W32/Troj_generic.AUULE Ransomware 4 FULL NO

W32/Obfuscated.X!genr Backdoor 6 FULL NO

SCKeylog.ANMB Keylogger 14 FULL YES

Results
● Tested samples: 2 IRC botnets, 1 HTTP botnet, 4 droppers, 1

ransomware, 1 backdoor and 1 keylogger

● Required network traces ranging from 4 to 25 (AVG 14)

● DNS lower bound (6 traces)

● On AVG the number of traces is reasonable (Polymorphism,
packing techniques)

Limitations
● Protocol agnostic approach

✔ Find a good trade-off
● Analysis of encrypted protocols is impossible

✔ API level solution
✔ MITM solution

● Malware with different behaviors (Domain flux)

✔ Improve the training set
✔ Protocol-aware heuristics

Use Cases
● Repeat the analysis after weeks/months

● Analysis of similar variations (polymorphic) of the same
sample

● Provide network containment for privacy/ethical issues

● Analysis of sophisticated attacks (Stuxnet/SCADA
systems)

The end

THANK YOU
graziano@eurecom.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

