## CATCH OF THE DAY

A Close Look at a Daily Dataset of Malware Samples Xabier Ugarte-Pedrero and Mariano Graziano CARO 2019, Copenhagen



Cisco Security Research

# \$whoami







Talos

Cisco Security Research

## Malware Research Team

#### • Malware analysis

- Quick analysis (extraction of indicators, coverage)
- In-depth reversing (manual)

#### Automation

- Signature generation (<u>Bass</u>)
- Automated analysis tools (<u>FIRST</u>, <u>Pyrebox</u>, <u>ROPMEMU</u>)
- Clustering

## Sharing is caring

- What do we share daily?
- What do we buy/exchange?
- What are the challenges?
- How useful is it?

## Clarification

- This presentation describes an academic paper developed in collaboration with Eurecom (France) [1]
- This research was started on the beginning of 2016
- Queries and sample processing were spread through several months by borrowing internal company resources

The dataset and our results should be representative and hold also after 3 years





Everyday security companies collect millions of samples

## 17 different feeds

## Open questions

## **Open questions**

- What the dataset contains?
- How many samples belong to known families?
- How much effort to analyze the remaining samples?
- How effective are the state-of-the-art techniques?

but most importantly:

- How much effort would it take?
- How many people? How many VMs? Cores?
- How many resources are wasted?
- What are the challenges?

.

| Day of Week | Total (1 year) | Avg PEs |
|-------------|----------------|---------|
| Monday      | 39,799,691     | 298,859 |
| Tuesday     | 41,374,785     | 304,719 |
| Wednesday   | 45,829,468     | 344,031 |
| Thursday    | 44,725,851     | 338,893 |
| Friday      | 43,244,266     | 324,400 |
| Saturday    | 40,898,046     | 327,448 |
| Sunday      | 38,459,952     | 320,919 |

| Day of Week | Total (1 year) | Avg PEs |
|-------------|----------------|---------|
| Monday      | 39,799,691     | 298,859 |
| Tuesday     | 41,374,785     | 304,719 |
| Wednesday   | 45,829,468     | 344,031 |
| Thursday    | 44,725,851     | 338,893 |
| Friday      | 43,244,266     | 324,400 |
| Saturday    | 40,898,046     | 327,448 |
| Sunday      | 38,459,952     | 320,919 |

| Day of Week | Total (1 year) | Avg PEs |
|-------------|----------------|---------|
| Monday      | 39,799,691     | 298,859 |
| Tuesday     | 41,374,785     | 304,719 |
| Wednesday   | 45,829,468     | 344,031 |
| Thursday    | 44,725,851     | 338,893 |
| Friday      | 43,244,266     | 324,400 |
| Saturday    | 40,898,046     | 327,448 |
| Sunday      | 38,459,952     | 320,919 |

Most prolific day!

| Week | Nb. of samples | Week | Nb. of samples | Week | Nb. of samples |
|------|----------------|------|----------------|------|----------------|
| 40   | 4,487,907      | 41   | 8,001,208      | 42   | 7,561,698      |
| 43   | 7,324,254      | 44   | 8,054,180      | 45   | 7,584,566      |
| 46   | 7,786,035      | 47   | 8,674,714      | 48   | 6,145,345      |
| 49   | 6,398,709      | 50   | 4,749,192      | 51   | 4,874,549      |
| 52   | 5,057,094      | 53   | 2,118,189      |      |                |

| Week | Nb. of samples | Week | Nb. of samples | Week | Nb. of samples |
|------|----------------|------|----------------|------|----------------|
| 40   | 4,487,907      | 41   | 8,001,208      | 42   | 7,561,698      |
| 43   | 7,324,254      | 44   | 8,054,180      | 45   | 7,584,566      |
| 46   | 7,786,035      | 47   | 8,674,714      | 48   | 6,145,345      |
| 49   | 6,398,709      | 50   | 4,749,192      | 51   | 4,874,549      |
| 52   | 5,057,094      | 53   | 2,118,189      |      |                |



## Day: Wednesday, November 18 2015 Number of samples: 1,261,882



















#### Dataset



| Subsystem               | DLLs    | Executables |
|-------------------------|---------|-------------|
| WINDOWS_GUI             | 66.327  | 162.327     |
| EFI_BOOT_SERVICE_DRIVER | 214.887 | 21.201      |
| WINDOWS_CUI             | 139.246 | 10.285      |
| EFI_RUNTIME_DRIVER      | 24.435  | 3215        |
| NATIVE                  | 92      | 888         |
| EFI_APPLICATION         | 781     | 400         |
| WINDOWS_CE_GUI          | 113     | 59          |
| UNKNOWN                 | 28      | 36          |
| EFI_ROM                 | 17      | 0           |
| XBOX                    | 3       | 0           |
| Total                   | 445.929 | 198.411     |

| Subsystem               | DLLs    | Executables |
|-------------------------|---------|-------------|
| WINDOWS_GUI             | 66.327  | 162.327     |
| EFI_BOOT_SERVICE_DRIVER | 214.887 | 21.201      |
| WINDOWS_CUI             | 139.246 | 10.285      |
| EFI_RUNTIME_DRIVER      | 24.435  | 3215        |
| NATIVE                  | 92      | 888         |
| EFI_APPLICATION         | 781     | 400         |
| WINDOWS_CE_GUI          | 113     | 59          |
| UNKNOWN                 | 28      | 36          |
| EFI_ROM                 | 17      | 0           |
| XBOX                    | 3       | 0           |
| Total                   | 445.929 | 198.411     |

| Subsystem               | DLLs    | Executables         |
|-------------------------|---------|---------------------|
| WINDOWS_GUI             | 66.327  | 162.327             |
| EFI_BOOT_SERVICE_DRIVER | 214.887 | 21.201              |
| WINDOWS_CUI             | 139.246 | 10.285              |
| EFI_RUNTIME_DRIVER      | 24.435  | 3215                |
| NATIVE                  | 172     | .612 executables 38 |
| EFI_APPLICATION         | 7 SI    | ubsystem 2 and )0   |
| WINDOWS_CE_GUI          | 1 13.   | subsystem 3         |
| UNKNOWN                 | 28      | 36                  |
| EFI_ROM                 | 17      | 0                   |
| XBOX                    | 3       | 0                   |
| Total                   | 445.929 | 198.411             |

- 60% of the samples have a size between 100K and 1M
- 98% x86\_32, 1,8% x86\_64, 0,01% ARM
- 51% of the samples with an entropy higher than 7
- 18,3% binaries are signed (11 with revoked certs)

172k samples are still too many

172k samples are still too many

We design a possible pipeline to process the samples

This pipeline is an instrument:

- Understand the distribution of samples
- Understand the challenges for a company
- Estimate the **cost** (computational and human)

Pipeline leverages de-facto malware analysis techniques

static analysis dynamic analysis manual inspection

#### VirusTotal

#### How much can we trust these AVs?

- Time of last scan vs current detection
- AV configuration parameters might be different
- Different types of engines (some are ML, heuristic...)
- FP prone AVs?
- Inaccurate / generic labels

#### Number of positives over time:

- January 2016
- July 2016
- January 2017 (rescan)



AV results after one year:

- 4,684 samples from 0 positives to 1+
- 2,281 from 1+ positives to 0
- A few samples removed from VT

3.5% of samples changed their disposition

#### AVClass[2] (state of the art for AV label aggregation) 69% of the samples classified into 1,057 families

| allaple     | 54,097 |
|-------------|--------|
| virut       | 16,328 |
| browsefox   | 7,400  |
| outbrowse   | 4,600  |
| installcore | 2,395  |

49%

#### • Samples with no AV class

- 16.5% not present in VT
- 67.7% had less than 5 positives
- AV class detected 22% as PUP
  - 87.4% of these had an AVClass
    browsefox, outbrowse, installcore, eorezo, softpulse, loadmoney

#### Dynamic analysis

- Extract additional information
- We leveraged a state of the art set up
- Internal to the company, we borrowed processing time
- Tuned and maintained: detonation, disarm anti-analysis, etc...

Dynamic analysis

Part of the samples showed low / no activity
 We ran those on a second sandbox

# A stunning 19% of the samples did not show a meaningful activity

Table 7. Classification of Samples with No/Low Activity

|                   | No activity | Low activity |
|-------------------|-------------|--------------|
| GUI               | 599         | 270          |
| Missing DLLs      | 3,814       | 599          |
| Crash             | 0           | 723          |
| Corrupted file    | 9,805       | 64           |
| Total             | 14,218      | 1,656        |
| Still Unexplained | 10,159      | 6,499        |

This takes (in one single day)

- 17 GiB of space
- 55 VMs ( 5 minute per sample)

dedicated to samples that have a GUI, crash, missing dependencies, or are corrupted

We expected to have polymorphic variants We grouped behavioral reports

Clustering tools / algorithms:

- Custom report normalization
- TLSH[3] (Trendmicro) over the normalized report
  - Take report as input produce locality sensitive hash as output
- Single-linkage + distance based flat clustering

#### 1,853 clusters, 6,846 outliers

#### 3 types of clusters

- Majority clusters (65%)
- NoClass clusters (23%)
- Mixed clusters (12%)

But these types do not tell us which type of samples are inside

Which kind of samples do we have?

- Mk -> Malicious samples we know (family name)
- **B** -> Samples we know are benign.
- Mu -> Malicious samples we have not identified

#### Which kind of samples do we have?

- Mk -> Malicious samples we know (family name)
- **B** -> Samples we know are benign.
- Mu -> Malicious samples we have not identified
  - Mv -> Variants of Mk
  - Mg -> Detected by generic engines / PUP
  - Mn -> The rest (we think it could be bad, but cannot automatically assign a class).

### We applied re-classification rules to identify samples *Mv, B, Mg*

#### Observed phenomena

- 1. We can propagate labels
- 2. We have clusters of "generic" malware, that may not deserve same attention as undetected malware
- 3. Benign samples usually to show low activity
- 4. Some clusters considered mixed because of naming inconsistency. E.g.: backupmypc & mypcbackup

#### As a result:

- Tentatively re-classified 4,946 previously unknown files
- Samples remaining...
  - 2,754 singleton
  - 4,177 unknown samples (Mn) in clusters
- We can assign priorities:
  - $\circ$  Singleton + Mn  $\rightarrow$  High priority
  - $\circ$  Mg clusters  $\rightarrow$  Medium priority

How much manual analysis effort needed?

- 3 different experiments
- High priority group
- Samples with low / no activity
- 64 bit binaries

These groups sum up to 24k binaries Sampled files from each of those groups

#### Experiment configuration:

- Analysts with 2 to 6 years of experience
- Asked these questions:
  - GW/MW?
  - Class (keylogger, RAT, botnet) and family?
  - How much time did it take?
  - Which approach did you use?
    - Blackbox
    - Manual
  - Would you need a deeper manual analysis?

#### High priority group

- Extracted several samples per cluster and singleton files
  - 52% / 43.2% labelled malicious (5% margin of error)
  - ~3% / ~5% required manual analysis
  - Malware type and family, 5% better for clustered samples vs singleton samples.
- Cross-checked verdicts for clusters
  86% verdicts were consistent

64bit files (2,603 samples)

- 82% have 0 positives
  - From 101 selected files only 11 should require further inspection.
- For the rest
  - 67% considered benign

#### (Low | No) activity group

- Extracted 349 samples from each group
- Same info (including screenshots / video of execution)
- 2 additional questions:
  - Does it have a GUI?
  - Does it show a crash?
- Overall 81% | 91% either considered benign, GUI or crash.

Estimation: ~27k samples either require interaction, crashed, corrupted, missing dependencies
 100 VMs per day if ran on a sandbox

Between 30 sec and 90 min to inspect the info / samples
 Estimation: 900 hours to take a cursory look at the 24k unknown samples.

Takeaways

## Takeaways

- 1. Complete analysis: 600 machines (5 min/sample)
- 2. Community info: only 3.5% of changed verdicts
- 3. Automated pipeline reclassified 16% of samples
- 4. Manual inspection of remaining 15% would take >100 person-days

## Takeaways

6. But only 5% of samples marked as requiring additional manual inspection Substitute decision process by ML?

 Up to 16% of resources consumed by samples that do not run properly

## Real world datasets

## Real world datasets

- Not balanced
- No clear labels
  - Ground truth does not exist
- No clear way to deal sample corruption
- Files treated individually (dependencies?)
- No info about how / where it was collected
- Almost no metadata
  - No info about how to run (parameters? environment?)

Sample ingestion strategies must deal with uncertainty

## Pipelines & prioritization strategies

In our daily operations we need to configure

- Heuristic rules
- Thresholds

**Systematic measurement and analysis** We must not make blind assumptions about our data

## More info...

Link to the paper:

#### "A Close Look at a Daily Dataset of Malware Samples" ACM Transactions on Privacy and Security

http://s3.eurecom.fr/docs/tops19\_dailymalware.pdf

# 

#### TALOSINTELLIGENCE.COM



blog.talosintelligence.com



@talossecurity